New research reveals how non-coding deletions in the FOXF1 gene lead to a rare, lethal infant lung disease, with implications for diagnosing and treating other pulmonary disorders.


RT’s Three Key Takeaways:

  1. Identification of Key Enhancers: Researchers have identified four upstream enhancers in the FOXF1 gene locus that are crucial for the expression of the FOXF1 gene in pulmonary endothelial and stromal cells, which are essential for lung development in infants.
  2. Implications for Diagnosis and Screening: The findings suggest that non-coding deletions in the FOXF1 gene locus, which interfere with these enhancers, cause alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), and highlight the importance of identifying these deletions for more precise genetic diagnosis and screening of the disease in newborns.
  3. Broader Impact on Pulmonary Disorders: The study’s insights into the role of FOXF1 enhancers not only enhance understanding of ACDMPV but also have potential implications for diagnosing and treating more common pulmonary disorders in newborns and infants, such as bronchopulmonary dysplasia and congenital diaphragmatic hernia.

New research shows how frequent non-coding FOXF1 gene deletions that interfere with important DNA regulatory regions, called enhancers, can lead to alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a rare, lethal, genetic lung disease that causes respiratory failure in newborns and infants.

The study, conducted at the Phoenix Children’s Research Institute at the University of Arizona College of Medicine — Phoenix, was a study published in Nature Communications.

Critical Role of the FOXF1 Protein

The FOXF1 protein is critically important in pulmonary vascular development, specifically responsible for the extension and branching of airways and blood vessels in the developing lung.

“Prior to this study, we knew deletions and mutations in the FOXF1 gene locus can result in ACDMPV, so our goal was to identify FOXF1 enhancers associated with the disease so we can diagnose it more precisely in newborn babies,” says Vlad Kalinichenko, MD, PhD, lung development and regeneration researcher and director of the Phoenix Children’s Research Institute at the University of Arizona College of Medicine – Phoenix.

Identification of Key Enhancers

This study, conducted in collaboration with Cincinnati Children’s Hospital Medical Center, identified four upstream enhancers in the FOXF1 gene locus—FOXF1 Expression in the Lung 1, 2, 3, and 4. It further showed these elements stimulate cell-specific FOXF1 expression in pulmonary endothelium and stromal cells, such as fibroblasts and pericytes. 

Pulmonary endothelial cells are essential to the development of alveoli, the tiny branches of air tubes in the lungs responsible for the exchange of oxygen and carbon dioxide in the bloodstream. Likewise, pulmonary stromal cells are also important to lung development and are a crucial component of overall lung structure.

Implications for Diagnosis and Treatment

Since many non-coding deletions in or near the FOXF1 gene locus cause ACDMPV, identifying specific pathogenic FOXF1 enhancers—that are critical for lung development—is important to understand and diagnose ACDMPV. This work could also enable better genetic screening for the disease, which currently relies primarily on exome DNA sequencing.

“This study demonstrates four specific FOXF1 enhancers play critical roles in the development of ACDMPV and resolves an important clinical question regarding why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to this lethal disease,” says Kalinichenko in a release. “Identifying mutations in the FOXF1 gene locus sooner will be critical for accurate genetic diagnosis of this severe congenital disease. As we continue to gain additional insight into how genes work, it will improve our capabilities to implement effective therapeutic interventions in more common pulmonary disorders of newborns and infants, such as bronchopulmonary dysplasia and congenital diaphragmatic hernia.”

Photo 220236655 © Vlad Salikhov | Dreamstime.com